1200串“海铃”捕捉“宇宙信使”!上海交大李政道研究所正式发布“海铃计划”蓝图

来源:上海教育新闻网

作者:程媛媛

时间:2023-10-11 10:47:48

本网讯 (记者 程媛媛)在不久的将来,中国南海北部的一个深约3.5公里的深海平原上,将垂悬起一大片“海铃”,静待着接收从地球对面穿透而来的中微子,以探索极端宇宙的奥秘。10月10日,上海交通大学李政道研究所正式发布南海大型中微子望远镜阵列“海铃计划”( TRopIcal DEep-sea Neutrino Telescope,TRIDENT)蓝图,相关论文于北京时间9日深夜在国际上发表于《自然·天文》杂志。

42a14e1995a67388ef83862891d79c2.jpg

海铃计划构想图

由于位于赤道附近,“海铃”可以通过地球的自转探测360度全天域的中微子,与南极冰立方以及北半球的其他中微子望远镜形成了完美的互补。按照规划,海铃中微子望远镜阵列将在2026年成为世界首个近赤道的小型中微子望远镜,开展对银河系内外的天体源搜索,并完成建设大阵列的全链技术验证。海铃终极大阵列将包括约1200根望远镜串列,直径约4公里,总占地面积约为12平方公里,可监测高能中微子反应的海水体积约7.5立方公里,设计寿命为20年。它将超越升级后的冰立方(IceCube),预期在2030年前后成为国际上最先进的中微子望远镜。

73acb4a82d0d46404484198c63dbcb0.png

中微子是宇宙中数量最多的次原子粒子之一,它不带电,主要通过弱相互作用与物质反应,犹如幽灵一般在宇宙中穿行,极难被捕获。目前已知的中微子有三种类型,电子中微子、缪子中微子和陶子中微子,它们在时空传播过程中由于量子效应可相互转换,这就是著名的中微子振荡现象。中微子在1930年首次被理论预言,但直到1956年才被实验观测到。科学家们对其性质的研究已多次刷新我们对基本物理规律的认知,并四次荣获诺贝尔奖。但中微子仍有许多未解之谜,如中微子的绝对质量为多少、它们是否为自身的反粒子等。对中微子更深入的探究,或再次颠覆人们对基本物理规律的认知。

998558fe9e0c308cc137ae51a8edb4f.jpg

中国科学院院士、海铃计划负责人景益鹏介绍道,正是由于其如幽灵般极强的穿透力,中微子可轻松逃逸极端、致密的宇宙和天体环境而不改变方向,是研究极端宇宙的理想信使。比如,宇宙大爆炸、超新星爆发、双中子星并合、黑洞爆发均伴随着大量中微子的产生,探测到这些中微子将帮助我们理解这些剧烈过程背后的机制。再比如,宇宙中的高能离子(又名“宇宙射线”)在百年前就被发现,通常认为它们起源于多种剧烈的天体过程,但由于宇宙射线在星际传播受磁场作用发生偏转,无法直接“溯源”。倘若宇宙射线其源头伴生的中微子被探测到,就能直接指回源头,确切地解答宇宙射线起源的百年谜题。

中微子天文学的思想起源于1960年苏联物理学家马可夫提出的在深海或湖里建造切伦科夫光探测元件阵列的构想。目前国际世界最大、最灵敏的中微子望远镜冰立方选择将探测器阵列建在2500米深的南极冰层中。该望远镜于2010年建成,2013年便首次探测到一个来自地外的弥散高能中微子流;2017年首次发现对应已知的天体源证据,叩开了高能中微子天文学的大门。此外,在地中海的KM3NeT和在贝加尔湖的Baikal-GVD项目均有部分深水中微子望远镜阵列在运行中。

288a4d9155f5797ac0dd718d31c8409.jpg

海铃计划首席科学家、李政道学者徐东莲透露道:“中微子天文学正处于重大突破的门槛上。当下,世界主要发达国家都在积极地筹建性能大大优化的二代中微子望远镜,在提升探测灵敏度的同时更精确地定位中微子源。二代望远镜的建成,有望催生中微子天文学和基础物理学的新突破。”

上海交通大学李政道研究所发起并牵头的“海铃计划”旨在探索建设中国首个深海中微子望远镜,由景益鹏担任项目负责人、徐东莲担任首席科学家。项目将通过捕捉高能(亚TeV到PeV量级)天体中微子来探索极端宇宙,为我国填补该领域的空白,加速构建我国完备的多信使天文网,推动粒子物理、天体物理、地球物理、海洋地理、海洋生物等前沿交叉研究,孕育多项原创科学发现,为人类文明做出重要的科学贡献。

3a075c14ae2227d9a507f478162898e.png

2021年9月初,由上海交通大学牵头的“海铃探路者”项目团队完成首次海试任务。本航次由徐东莲担任航次首席科学家,海洋工程专家田新亮担任领队,共有来自上海交通大学、北京大学、清华大学、中国科学技术大学、自然资源部第二海洋研究所、向阳红03号科考船等机构的近八十位科研人员与技术人员共同参与。在此前仅一年极有限的研发时间窗里,上海交大李政道研究所、物理天文学院、船建学院的团队合作研制了适用于4000米深海环境、携带高灵敏感光元件的探测球舱和相应的深海布放系统。

f89877a8f4169e0be91c92173f26d34.png

探路者团队通过部署自研的高灵敏感光元件探测球舱,首次实现同时使用两套独立的光学测量系统(光电倍增管系统和相机系统),在预选台址约3420米水深原位测量了海水的光学性质,结果显示其平均吸收和散射长度分别为约27米和63米。相比之下,普通的自来水衰减长度常常只有2-3米。清澈的海水可更清晰地“录制”中微子与海水反应的踪迹,更有利于重建中微子的种类、来源的方向和携带的能量。在候选台址成功布放探测球舱也部分验证了未来海铃望远镜的耐高压玻璃球舱、光电探测器、数据采集系统、数据分析与模拟、深海潜标布放等核心技术。

b4ab2f8b9f4def6559d58488fbf1811.jpg

海铃团队还创新提出新型混合探测球舱概念设计,将舱内表面紧密覆盖了多个能探测到单光子的光电倍增管(PMT),形成类似于果蝇的复眼结构,同时巧妙地利用PMT之间的空隙安装超快时间响应的硅光电倍增管,进一步优化中微子探测性能,将能实现无死角地观测不同方向的中微子。预计海铃阵列建成后一年内就能够发现鲸鱼座(Constellation Cetus)中的棒旋星系NGC 1068的稳定中微子源,并发现类似于冰立方利用十年的数据才初步观察到的TXS 0506+056耀星体(一个正在吞噬物质的超大质量黑洞)的中微子爆发。

海铃项目得到了教育部、科技部、上海市、海南省的大力支持,望远镜的预研工作也是上海市科委的重大项目和科技部重点研发专项青年项目。为了支撑“海铃探路者”项目的顺利执行,上海交通大学于2021年06月成立了海铃合作组,依托上海交通大学物理学、天文学、海洋工程、海洋科学、材料科学、电气工程、通讯工程等多学科优势交叉合作,同时与北京大学、清华大学、中国科学技术大学、自然资源部第二海洋研究所等科研院校的相关学科紧密合作,至今项目组已发展到10余家合作单位,近百名成员,稳步推进科学、工程、技术等方面的协同攻坚。


责任编辑:程媛媛

优秀班主任的成长秘籍,请点击关注

优秀班主任的成长秘籍,请点击关注

新闻网微信
Top